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ABSTRACT
This is the supplementary information of the manuscript “Tiny noise, big mistakes: adversarial perturbations induce errors in Brain-
Computer Interface spellers”.
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THE VICTIM MODEL OF THE P300 SPELLER

The details of the victim model of the P300 speller are introduced.

xDAWN spatial filters

The original xDAWN filter [1] was designed for P300 evoked potentials by enhancing the target response with respect

to the non-target response. We used a generalized version in our experiments, which was implemented in pyRiemann1.

More specifically, let D = {(Xi, yi)}Ni=1 be the training set, where Xi ∈ RNe×Ns is the i-th mean-centered EEG

epoch (Ne is the number of channels, and Ns the number of time domain samples), and yi ∈ {0, 1} its corresponding

label (0 for non-target, and 1 for target). The average epoch Xc, c ∈ {0, 1}, is first calculated. Spatial filters

Uc ∈ RNf×Ne were then designed to maximize the signal to signal-plus-noise ratio for each class:

Uc = arg max
U

tr
(
UXcX

T

c U
T
)

tr
(
UXallXT

allU
T
) , (1)

where Nf is the number of filters (Nf = 8 was used in our experiments), Xall is obtained by concatenating all EEG

epochs in D along the channels, and tr is the trace of a matrix. Generalized eigenvalue decomposition can be used

to solve equation (1).

1https://pyriemann.readthedocs.io/en/latest/index.html
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After obtaining the filters for both classes, the concatenated spatial filters U = [U0;U1] can be used to filter each

EEG epoch:

X̃i = UXi. (2)

Tangent space projection

Covariance matrices of the EEG trials are widely-used in BCIs. However, they lie on a Riemannian manifold of

Symmetric Positive Definite (SPD) matrices, and hence cannot be directly used by Euclidean space classifiers, such

as Logistic Regression and Support Vector Machines. To solve this problem, the covariance matrices are projected

onto the Euclidean tangent space of a reference SPD matrix, and then the vectorized features are used by Euclidean

space classifiers.

More specifically, we first calculate the augmented covariance matrix Ci for each X̃i:

Ci =

[
ZZT , ZX̃T

i

X̃iZ
T , X̃iX̃

T
i

]
, (3)

where Z =
[
UX0;UX1

]
. Then, Ci is projected onto the tangent space of the reference SPD matrix Cf , which is the

geometric mean of {Ci}Ni=1, i.e.,

Cf = argmin
C

(
N∑
i=1

δ(C,Ci)
2

)
, (4)

where δ(CA, CB) is the Affine Invariant Riemannian Metric distance:

δ(CA, CB) =
∥∥∥logm(C−1/2

A CBC
−1/2
A

)∥∥∥. (5)

The vectorized features are:

si = upper
(
logm

(
C

−1/2
f CiC

−1/2
f

))
, (6)

where upper(·) vectorizes the upper triangular part of a symmetric matrix. A weight of
√
2 is applied to the off-

diagonal elements, and a weight of 1 to the rest, during the vectorization. si can then be fed into any Euclidean

space classifier.

CANONICAL CORRELATION ANALYSIS (CCA)

This section introduces CCA, which can be used to extract the underlying correlation between two time series.

Problem setup

Let X ∈ RC1×N and Y ∈ RC2×N be two multi-channel time series, where C1 and C2 represent the number of

channels, and N the number of time domain samples. X and Y are z-normalized in each channel.

The main idea of CCA is to find a pair of canonical variables, denoted as a ∈ RC1×1 and b ∈ RC2×1, for X and

Y respectively, so that the correlation coefficient ρ between aTX and bTY can be maximized. The problem can be

mathematically formulated as:

max
a,b

aTXY Tb√
aTXXTa

√
bTY Y Tb

, (7)
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which can be re-expressed as:

max
a,b

aTXY Tb, (8)

s.t. aTXXTa = 1,bTY Y Tb = 1.

Solution of CCA

There are several approaches to solve equation (8). Here we introduce the Lagrange multiplier method [2].

Denote ABT by SAB . Then, equation (8) can be rewritten as:

max
a,b

aTSXY b, (9)

s.t. aTST
XXa = 1,bTST

Y Y b = 1.

According to the Lagrange multiplier method, equation (9) is equivalent to max
a,b,λ,θ

J(a,b, λ, θ), where:

J(a,b, λ, θ) = aTSXY b− λ

2
(aTSXXa− 1)− θ

2
(bTSY Y b− 1). (10)

By setting the first partial derivatives to zero, i.e.,

∇aJ = SXY b− λ · SXXa = 0, (11)

∇bJ = SY Xa− θ · SY Y b = 0, (12)

∂J

∂λ
= −1

2
(aTSXXa− 1) = 0, (13)

∂J

∂θ
= −1

2
(aTSY Y b− 1) = 0, (14)

we have

λ = θ = aTSXY b. (15)

It should be noted that equation (15) is also the definition of the correlation coefficient ρ.

According to equations (11) and (12), we have:

S−1
XXSXY S

−1
Y Y SY Xa = λ2a = ρ2a, (16)

which implies that ρ2 equals the largest eigenvalue of S−1
XXSXY S

−1
Y Y SY X , and a is the corresponding eigenvector.

b can be obtained in a similar way.

DETAILS OF THE ATTACK METHOD FOR THE SSVEP SPELLER

As shown in the main body of our paper, the key to craft δf̂ is to solve

argmax
f∈F

ρ(X + δf̂ , Yf ) = f̂ . (17)

In other words, δf̂ can be crafted by solving

max
δ
f̂

∑
X∈D

λmax(S(X + δf̂ , Yf̂ )). (18)
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Since S(X + δf̂ , Yf ) is not symmetric, it is difficult to calculate the derivatives of its largest eigenvalue, resulting

in challenges in optimization. Considering the fact that the largest eigenvalue is always no smaller than the average

of all eigenvalues:

λmax(S(X + δf̂ , Yf )) >
1

Ne

∑
j
λj(S(X + δf̂ , Yf ))

=
1

Ne
tr(S(X + δf̂ , Yf )), (19)

instead of solving equation (18) directly, we can maximize its lower bound to reduce the optimization difficulty:

max
δ
f̂

∑
X∈D

tr(S(X + δf̂ , Yf̂ )). (20)

Because the effective frequency band of SSVEP signals is 7-90 Hz, we introduced a new variable rf̂ so that

δf̂ = filt(rf̂ ), (21)

where filt(·) means retaining only the 7-90 Hz effective signal frequency components. As a result, we can ensure the

integrity of the adversarial template during signal filtering. In addition, we added α · ∥δf̂∥F to penalize the energy

of the perturbation, where α is the penalty coefficient.

Finally, the problem becomes:

min
r
f̂

−
∑
X∈D

tr(S(X + filt(rf̂ ), Yf̂ )) + α · ∥filt(rf̂ )∥F . (22)

SECURITY OF P300 SPELLER FOR AMYOTROPHIC LATERAL SCLEROSIS (AL-
S) PATIENTS

We performed additional experiments to investigate how adversarial perturbations impact ALS patients on P300

Spellers [3]. The eight-channel (Fz, Cz, Pz, Oz, P3, P4, PO7 and PO8) EEG signals were recorded from eight ALS

patients. The EEG data were digitized at 256 Hz, bandpass filtered to 0.1-30 Hz, and then z-normalized for each

channel. For each subject, there were 21 characters for training and 14 for testing. Each character corresponds to a

set of 12 random intensifications, which were repeated 20 times. Each intensification lasted for 125 ms, followed by

a 125 ms blank. In our experiments, 10 repeats were utilized to output a character during the test.

We applied the same Riemannian geometry based approach to recognizing the existence of P300 potentials. The

only difference from the previous study was that the number of xDAWN spatial filters was eight. As shown in the

‘Before attack’ panel of Table 1, the victim models demonstrated good performance without attacks, and also high

robustness to Gaussian noise perturbations. However, the ‘After attack’ panel shows that all user scores and ITRs

were more or less reduced after adversarial perturbations. For half of the subjects (subjects 1, 2, 5 and 7), the

user scores and ITRs approached zero, i.e., the P300 speller became almost completely useless, indicating a serious

security concern of P300 spellers to ALS patients.

TRANSFERABILITY OF ADVERSARIAL PERTURBATIONS

We have mentioned that one limitation of the attack approaches is that they require some subject-/model- specific

information to construct adversarial perturbation templates. One possible solution to alleviate this problem is to

enhance the transferability of adversarial perturbations: the attacker can generate adversarial perturbations based on

EEG signals gathered by himself/herself, or any model he/she chooses to use, and then utilize them to attack another
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Table 1 P300 speller attack results for eight ALS patients. Before attack: Baselines on clean EEG data (without adding any pertur-
bations) and Gaussian-noise-perturbed EEG data, and the corresponding SPRs (dB). After attack: Average user/attacker scores/ITRs
of the 36 attacker characters in target attacks, and the corresponding period and trial SPRs (dB). ϵ = 0.8 for all the perturbations.

Sub.

Before attack After attack

Clean Gaussian noise User Attacker Period Trial

Score ITR Score ITR SPR Score ITR Score ITR SPR SPR

1 0.79 6.57 0.79 6.57 22.6 0.03 0.04 1.00 10.22 22.6 27.4

2 0.93 8.76 0.93 8.76 22.4 0.10 0.26 0.74 6.09 22.4 27.5

3 1.00 10.22 1.00 10.22 22.9 0.53 3.59 0.17 0.67 22.9 27.7

4 1.00 10.22 0.93 8.76 23.1 0.45 2.83 0.22 1.10 23.1 27.9

5 1.00 10.22 1.00 10.22 22.2 0.05 0.12 0.86 7.72 22.2 27.1

6 0.93 8.76 0.86 7.60 22.4 0.21 0.86 0.44 2.75 22.4 27.2

7 1.00 10.22 1.00 10.22 22.9 0.03 0.05 0.96 9.45 22.9 27.7

8 1.00 10.22 1.00 10.22 23.1 0.98 9.73 0.03 0.05 23.1 28.0

subject/model. Here we present some experimental results on the cross-subject and cross-model transferability of our

adversarial perturbations (for P300 spellers, the ALS patient dataset was used due to its larger number of subjects).

We found that adversarial perturbations for SSVEP spellers seem to have better transferability than P300 spellers.

Cross-subject transferability

We used adversarial perturbations generated from one subject to attack the victim model of another subject. Figure 1

shows the average attacker scores of cross-subject attacks. There was almost no cross-subject transferability of ad-

versarial perturbation templates for P300 spellers, whereas perturbations for SSVEP spellers can usually successfully

attack victim models of different subjects. Additionally, some subjects were much more robust to transfer attacks,

e.g., Subjects 12, 22 and 25 in Figure 1b.

Why adversarial perturbation templates demonstrated poor cross-subject transferability for P300 spellers will be

investigated in more depth in our future research.

Figure 1 Cross-subject transferability of adversarial perturbations. The heatmap shows the average attacker scores when using the
adversarial perturbations of one subject to attack another subject. a, attacker scores for the P300 speller. b, attacker scores for the
SSVEP speller.
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Cross-model transferability

Cross-model transferability requires adversarial perturbations to be able to attack different EEG classification

pipelines, which means the attacker does not need access to victim models any more, implying a more serious

threat to the security of BCI spellers. This subsection presents the attack performance of our generated adversarial

perturbations on new EEG classification pipelines.

For P300 spellers, the new classification pipeline consisted of xDAWN filtering and Logistic Regression classi-

fication, and the adversarial perturbation templates were again generated from the Riemannian geometry based

approach. The ‘Before attack’ panel of Table 2 shows that the new pipeline had high classification accuracy without

attacks, and it was also robust to Gaussian noise. The ‘After attack’ panel shows that the new pipeline can still be

manipulated by adversarial perturbation templates constructed from a different pipeline, though not as much as that

in Table 1. Comparing the attack performances in Tables 1 and 2, it seems that an adversarial perturbation template

with better attack performance on the model it was generated from may also have better cross-model transferability

to attack another model.

Table 2 P300 speller cross-model attack results for eight ALS patients. The victim model (xDAWN and Logistic Regression) was
different from the attacker model (a Riemannian geometry based approach), based on which adversarial perturbations were generated.
Before attack: Baselines on clean EEG data (without adding any perturbations) and Gaussian-noise-perturbed EEG data, and the
corresponding SPRs (dB). After attack: Average user/attacker scores/ITRs of the 36 attacker characters in target attacks, and the
corresponding period and trial SPRs (dB). ϵ = 0.8 for all perturbations.

Sub.

Before attack After attack

Clean Gaussian noise User Attacker Period Trial

Score ITR Score ITR SPR Score ITR Score ITR SPR SPR

1 0.86 7.60 0.86 7.60 22.6 0.03 0.04 1.00 10.22 22.6 27.4

2 1.00 10.22 1.00 10.22 22.4 0.53 3.56 0.24 0.99 22.4 27.5

3 1.00 10.22 1.00 10.22 22.9 0.62 4.66 0.15 0.60 22.9 27.7

4 0.79 6.57 0.79 6.57 23.1 0.49 3.21 0.20 0.91 23.1 27.9

5 0.86 7.60 0.86 7.60 22.2 0.17 0.60 0.60 4.31 22.2 27.1

6 1.00 10.22 1.00 10.22 22.4 0.36 1.90 0.31 1.66 22.4 27.2

7 1.00 10.22 1.00 10.22 22.9 0.17 0.61 0.53 3.59 22.9 27.7

8 1.00 10.22 1.00 10.22 23.1 0.94 9.04 0.04 0.06 23.1 28.0

For SSVEP spellers, we utilized Filter Bank Canonical Correlation Analysis (FBCCA)2 as our new victim model [4].

Table 3 shows the baseline performance of FBCCA and the attack performance of adversarial perturbations (generated

from CCA) on this model. FBCCA demonstrated promising performance on clean and randomly perturbed EEG

signals. However, adversarial perturbations generated from CCA can still manipulate the output characters of

FBCCA, verifying that cross-model transferability also exists in SSVEP spellers.

The key of the transferability is to find the most common patterns shared by different models, hence the adversarial

perturbations affecting these patterns can attack as many models as possible. From this point of view, generating

adversarial perturbations based on the ensemble of multiple models seems to be a promising direction. We will

explore this in our future research.

ADDITIONAL FIGURES

Figure 2 presents the baseline performances of all 35 subjects for the SSVEP dataset. Figure 3 shows how the

synchronization time delay affects the attack performance.

2Our implementation was adapted from https://github.com/hisunjiang/CCAforSSVEP.
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Table 3 SSVEP speller cross-model attack results. The victim model (FBCCA) was different from the attacker model (CCA), based on
which adversarial perturbations were generated. Before attack: Baselines on clean data (without adding any perturbations), Gaussian-
noise-perturbed EEG data and periodic-noise-perturbed EEG data (single/compound). After attack: Average user/attacker scores/ITRs
of 40 attacker characters in target attacks, and the corresponding SPRs (dB).

Sub.

Before attack After attack

Clean Gaussian Noise S/C Periodic Noise
SPR

User Attacker
SPR

Score ITR Score ITR Score ITR Score ITR Score ITR

3 0.98 218.7 0.98 219.0 0.96/0.97 212.7/217.7 25.0 0.06 2.3 0.92 204.2 25.3

4 0.88 181.4 0.88 182.2 0.84/0.88 169.0/180.1 25.0 0.03 0.0 1.00 230.6 25.7

12 0.85 173.3 0.82 163.1 0.81/0.81 159.9/159.9 25.0 0.05 2.2 0.97 219.0 25.5

22 0.95 207.4 0.95 208.1 0.94/0.95 204.7/206.4 25.0 0.03 0.4 0.99 228.6 25.1

25 0.87 176.8 0.84 168.1 0.83/0.84 163.4/166.4 25.0 0.10 7.8 0.90 194.0 26.7

26 0.87 177.9 0.86 174.1 0.75/0.82 139.8/159.6 25.0 0.03 0.0 1.00 231.4 24.8

32 0.88 181.2 0.87 180.1 0.80/0.85 157.1/170.5 25.0 0.03 0.0 1.00 231.4 24.9

34 0.88 180.7 0.85 171.3 0.72/0.80 132.6/155.9 25.0 0.03 0.0 0.98 226.4 25.9

5 10 15 20 25 30 35
Subject

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 2 Classification accuracies of all 35 subjects for the clean SSVEP dataset. CCA was utilized to recognize the user characters.
Eight subjects (3, 4, 12, 22, 25, 26, 32, 34) with the best baseline performances are shown in red, whereas the others in green.

Figure 3 User and attacker scores with respect to the synchronization time delay. The curve represents the mean of all attacker
characters, and the shadow the standard deviation. a, scores for the P300 speller, where 100 test trials for Subject A were perturbed to
be misclassified as each of the 36 attacker characters. b, scores for the SSVEP speller, where 5× 40 = 200 test trials for Subject 26 were
perturbed to be misclassified as each of the 40 attacker characters.
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